Российские физики уплотнили энергию атомной батарейки в 10 раз

24 апреля 2018
ФГБНУ ТИСНУМ Образец ядерной батарейки ФГБНУ ТИСНУМ

Ученые из МФТИ, ФГБНУ ТИСНУМ и МИСиС оптимизировали толщину слоев «ядерной батарейки», использующей для генерации электрической энергии бета-распад изотопа никеля-63. В одном грамме созданной ими батарейки запасено около 3300 милливатт-часов, что является лучшим результатом среди «ядерных батареек» на основе никеля-63 и в десять раз превосходит плотность энергии, запасенной в обычных химических элементах. Статья опубликована в журнале Diamond and Related Materials.

Более ста лет назад, в 1913 году, Генри Мозли представил первый радиоизотопный источник электрической энергии, представлявший собой посеребренную изнутри стеклянную сферу, в центре которой, на изолированном электроде, располагался радиевый источник. Электроны бета-распада радия создавали разность потенциалов между серебряным слоем стеклянной сферы и центральным электродом. Такой источник обладает чрезвычайно высоким напряжением холостого хода — в десятки киловольт — и малым током, поэтому на практике его использование почти невозможно. В 1953 году Пол Раппапорт предложил использовать полупроводниковую структуру для преобразования энергии бета-распада радиоактивных элементов. Бета-частицы (электроны или позитроны) ионизируют атомы полупроводника и создают неравновесные носители зарядов, которые при наличии статического поля барьерной p-n-структуры упорядоченно движутся, создавая электрический ток. Основанные на этом принципе элементы назвали бета-вольтическими. Главным преимуществом таких элементов перед гальваническими выступает их долговечность: период полураспада некоторых радиоактивных изотопов составляет десятки или сотни лет, следовательно, мощность элемента будет оставаться почти постоянной в течение всего периода. К сожалению, удельная мощность бета-вольтических генераторов сильно уступает химическим батареям. Тем не менее радиоактивные генераторы все-такииспользовали в 1970-х годах для питания кардиостимуляторов, однако впоследствии их вытеснили литий-ионные аккумуляторы, дешевизна изготовления которых перевесила долговечность бета-вольтических элементов.

Заметим, что бета-вольтические батарейки не следует путать с радиоизотопными термоэлектрическими генераторами (сокращенно — РИТЭГ), которые тоже иногда называют ядерными батареями. В этих устройствах энергия радиоактивных распадов используется для нагрева и создания потока тепла, который потом конвертируется в электрический ток с помощью термоэлектрических элементов. Эффективность РИТЭГов составляет всего несколько процентов и зависит от температуры. Тем не менее из-за своей долговечности и относительно простого устройства радиоизотопные генераторы широко используются для питания космических аппаратов — например, зонда New Horizons или марсохода Curiosity. Ранее РИТЭГи также устанавливали на радиомаяках и метеостанциях, расположенных в труднодоступных областях, однако сейчас эту практику приостановили из-за трудностей утилизации и риска утечки радиоактивных веществ.

Группа ученых под руководством Владимира Бланка, директора ФГБНУ ТИСНУМ и заведующего кафедрой «Физика и химия наноструктур» МФТИ, придумала способ почти на порядок повысить удельную мощность «ядерной батарейки». В разработанном и изготовленном ими элементе бета-частицы испускались радиоактивным изотопом никеля-63 и попадали в алмазные преобразователи на основе барьера Шоттки. Полная электрическая мощность батарейки составила около одного мкВт, а удельная мощность достигла десяти микроватт на кубический сантиметр — этого достаточно, чтобы питать современный кардиостимулятор. Период полураспада никеля-63 — около ста лет. Таким образом, в одном грамме батарейки запасено около 3300 милливатт-часов, что в десять раз больше, чем в химических батарейках.

Образец «ядерной батарейки» состоял из двухсот алмазных преобразователей, чередуемых слоями фольги никеля-63 и стабильного никеля. Мощность, генерируемая преобразователем, зависит от толщины никелевой фольги и самого преобразователя, который поглощает бета-частицы. Все известные на данный момент прототипы ядерных батарей плохо оптимизированы, так как имеют лишний объем. Если толщина бета-источника слишком велика, электроны, рождающиеся внутри него, не смогут покинуть его. Этот эффект называется самопоглощением. С другой стороны, сильно уменьшать толщину источника тоже невыгодно, поскольку вместе с ней уменьшается число бета-распадов в единицу времени. Аналогичные рассуждения применимы и к толщине преобразователя.

Перед учеными стояла цель: создать батарею на никеле-63 с максимальной удельной мощностью, то есть без лишнего объема. Для этого они численно смоделировалидвижение электронов в бета-источнике и прилегающих преобразователях и нашли их оптимальные толщины: оказалось, что эффективнее всего бета-источник на основе никеля-63 «работает» при толщине около двух микрометров, а алмазный преобразователь на основе барьера Шоттки — при толщине около 10 микрометров. Таким образом на 20 подложках были выращены 200 преобразователей. Разработанная технология чрезвычайно важна с экономической точки зрения: высококачественные алмазные подложки стоят очень дорого, поэтому не подходят для массового производства преобразователей методом уменьшения толщины.

В 2016 году ученые уже сообщали о разработке прототипа ядерной батарейки на основе никеля-63. В июне 2017-го работающий образец ядерной батарейки мощностью в 1 микроватт с полезным объемом 1,5 кубического сантиметра былпоказан ФГБНУ ТИСНУМ и НПО «Луч» на форуме «Атомэкспо-2017».

Основным фактором, ограничивающим изготовление ядерных батареек в России, является отсутствие промышленного производства и обогащения изотопа никеля-63. К середине 2020-х годов планируется поставить такое производство на поток.

Альтернативный способ создания ядерной батарейки на основе алмаза — изготовление алмазных преобразователей из радиоактивного углерода-14, обладающего чрезвычайно большим периодом полураспада: 5700 лет. О разработке таких генераторов сообщали физики из Университета Бристоля.

Полученный результат открывает новые перспективы для медицинских применений. Современные кардиостимуляторы имеют размер более 10 кубических сантиметров и потребляют мощность около 10 микроватт. Разработанная батарея может быть использована в качестве источника питания такого кардиостимулятора практически без серьезных изменений его конструкции и объема. «Вечный» кардиостимулятор значительно повысит качество жизни пациентов, так как исчезнет потребность в его обслуживании и замене батарей.

Также в разработке компактных ядерных батарей заинтересована космическая промышленность. В частности, в настоящее время существует потребность в автономных беспроводных внешних датчиках и микросхемах памяти со встроенной системой питания для космических аппаратов. Алмаз — один из наиболее радиационно стойких полупроводников и за счет большой ширины запрещенной зоны может функционировать в широком диапазоне температур, что делает его идеальным материалом для создания ядерных батарей космических аппаратов.

Ученые планируют продолжить свои исследования в области ядерных батарей и предлагают основные направления развития данной тематики. Во-первых, это повышение обогащения никеля-63 в батарее, что приведет к линейному росту мощности. Во-вторых, разработка алмазной p-i-n-структуры с контролируемым профилем легирования, которая позволит увеличить напряжение, а значит, и полезную мощность батареи — в три и более раза. В-третьих, увеличение площади поверхности преобразователя, что позволит разместить больше атомов никеля-63 на одном преобразователе.