Российские учёные создали первую гибридную энергетическую магистраль
Модельная гибридная энергетическая магистраль. В ходе опытов по ней передавалось до 50 МВт электроэнергии и до 25 МВт (в эквиваленте) в виде жидкого водорода. (Здесь и ниже фото ИНМЭ РАН.)
Новости
5
Сотрудники Института нанотехнологий микроэлектроники (ИНМЭ РАНexternal link, opens in a new tab), Всероссийского научно-исследовательского проектно-конструкторского и технологического института кабельной промышленности (ВНИИКПexternal link, opens in a new tab) и Московского авиационного института (МАИexternal link, opens in a new tab) разработали и успешно испытали первую в мире гибридную энергетическую магистраль. Энергия в ней передаётся сразу двумя способами — в виде потока жидкого водорода и в виде электричества по сверхпроводящему кабелю.
Создание новых типов линий электропередачи — дело весьма актуальное, но не простое. Сборный коллектив отечественных учёных и инженеров реализовал на практике выдвинутую в 2011 году идею кабельной линии энергопередачи, сочетающей сверхпроводник и хладоагент, который не только поддерживает сверхпроводящее состояние кабеля, но является энергоносителем. Идея доведена до опытного образца; в качестве хладоагента использован жидкий водород. Затраты на поддержание низкой температуры в «водорических» (от hydricity — hydrogen + electricity) магистралях для передачи электроэнергии составляют десятые доли процента от общего объёма передаваемой энергии, а экологичность водородных технологий и подобранный с учётом низкой стоимости сверхпроводящий материал — дополнительные, но также весомые аргументы.
Обсуждение возможности создания гибридных транспортных энергомагистралей ведётся давно. В мае 2011-го в Институте изучения устойчивости окружающей средыexternal link, opens in a new tab (Потсдам, ФРГ) под руководством Нобелевского лауреата Карло Руббиаexternal link, opens in a new tab состоялся симпозиум, на котором рассматривались возможности передачи потоков энергии порядка 10 ГВт на расстояния в тысячи километров. Был сделан теоретический расчёт, показавший, что оптимальным решением является именно гибридная магистраль с жидким водородом и сверхпроводящим кабелем на основе MgB2. А вот первая экспериментальная работа проведена в России, и это не может не радовать.
В качестве сверхпроводящего материала российские специалисты использовали ленты диборида магния MgB2 производства итальянской фирмы Columbus Superconductorexternal link, opens in a new tab. Этот низкотемпературный сверхпроводник с критической температурой в ~39 К был открыт совсем недавно, в 2001 году. Он хорошо подходит для использования в водородной магистрали, так как может работать при температуре жидкого водорода, демонстрируя высокие сверхпроводящие свойства. Главное же в том, что он сравнительно прост в производстве и недорог (в 20 раз дешевле известных высокотемпературных сверхпроводников). Кстати, созданный во ВНИИКП сверхпроводящий кабель — это второй случай использования диборида магния на практике; до сих пор преимуществами этого материала пользовались лишь разработчики магнитов МРТexternal link, opens in a new tab-сканеров.
Основной токонесущий слой нового сверхпроводящего кабеля состоит из пяти лент диборида магния, спирально уложенных на сердечник из пучка медных проволок. Диаметр кабеля — 26 мм, длина — около 10 м. Внутри конструкции остался изолированный канал диаметром около 12 мм, предназначенный для охлаждающего жидкого параводорода. Кроме того, параводород циркулирует в полости между внешней оболочкой кабеля (диаметром 28 мм) и внутренней стенкой криостата (40 мм).
Испытания экспериментальной энергомагистрали проводились на специализированном стенде Конструкторского бюро химавтоматикиexternal link, opens in a new tab (Воронеж). Установка представляла собой макет гибридной энергетической магистрали (с рабочим давлением до 10 бар) для размещения сверхпроводящего кабеля, собственно сверхпроводящий кабель и токовые вводы.
Экспериментальный образец силового сверхпроводящего кабеля. Светлые полоски — сверхпроводник, прочее — слои медных проволок для защиты при коротких замыканиях
«Сегодня необходимый порядок величины расстояний передачи электроэнергии составляет 3 000–5 000 км, а требуемая мощность — около 10 ГВт. В модельной магистрали, которую мы испытали, поток жидкого водорода в 200–220 г/с несёт около 25 МВт мощности, плюс по сверхпроводящему кабелю идёт электричество — в нашем случае это 50 МВт. Но последний показатель легко увеличить втрое, добавив число сверхпроводящих лент, причём даже в нашей магистрали. В промышленном решении за счёт увеличения тока, напряжения и объёма потока водорода (увеличив диаметр трубы) можно пропускать куда более мощные энергопотоки».
Уместен вопрос: как всё это сопрягается с практикой? Вероятно, пока никак. Несмотря на то что жидкий водород действительно значительно превосходит в удельной энергетической ёмкости другие виды жидкого топлива (бензин — вдвое), пока нет ни развитой инфраструктурыexternal link, opens in a new tab, ни значительного числа потребителей. И всё-таки эксперимент многообещающий: использованный в качестве хладоагента жидкий водород имеет теплоту испарения 446 кДж/кг, в то время как для жидкого гелия она составляет 20,28 кДж/кг. Поэтому его применение позволило создать весьма компактную установку (максимальный наружный диаметр — 370 мм) с высокой тепловой стабильностью. И это уже не говоря о меньшей стоимости жидкого водорода (в сравнении с тем же гелием). Ну а про дешевизну диборида магния мы уже писали...