Физики из Отдела оптики низкотемпературной плазмы ФИАН создали и протестировали систему обнаружения малых концентраций веществ в газовых смесях. Работа нацелена на обеспечение безопасности термоядерного реактора ИТЭР, однако спектр возможных применений разработанного метода невероятно широк: от экологического контроля до диагностики заболеваний. Результаты исследования в журнале Laser Physics Letters.
ИТЭР – проект по созданию международного экспериментального термоядерного реактора, задачей которого станет демонстрация возможности коммерческого использования термоядерной энергии. Запуск реактора, сооружаемого во французском исследовательском центре Кадараш, намечен на 2025 год. Для отвода избытков тепла реактор необходимо оснастить водяной системой охлаждения, что приводит к дополнительным трудностям: если водяные пары проникнут в плазменную камеру через микротрещины, это может привести к катастрофическим последствиям. Чтобы контролировать концентрацию водяного пара в плазме, сотрудниками Отдела оптики низкотемпературной плазмы ФИАН был метод мультиспектральной актинометрии плазмы.
В ходе эксперимента ученые фиксировали интенсивность излучения, испускаемого двумя видами частиц: концентрация которых была известна (так называемых актинометров) и концентрация которых изучалась. Соотношение измеренных интенсивностей дало возможность сделать вывод о концентрации изучаемого вещества. В качестве актинометра учеными был выбран инертный газ ксенон, а концентрация воды определялась по излучению гидроксила OH, появляющегося при распаде молекул воды. Подобный подход позволил достигнуть рекордной чувствительности к натеканию водяных паров в реактор без существенного вмешательства в его конструкцию. Однако точность метода сначала вызывала некоторые сомнения, так как концентрация воды измерялась не напрямую, а рассчитывалась с использованием значений некоторых физических величин, не всегда известных точно в реальных условиях.
Результаты эксперимента по измерению концентраций различных веществ в плазме инертных газов.
Измеренные величины отмечены символами, а результаты моделирования – сплошными линиями.
Можно заметить, что экспериментальные данные хорошо согласуются с результатами моделирования
Чтобы проверить результаты оптической актинометрии, ученые ФИАНа определили концентрацию воды другим методом, позволяющим провести прямые измерения, пусть и с использованием более сложной установки. Таким методом стала лазерная спектроскопия: физики наблюдали за поглощением излучения лазера с длиной волны, соответствующей энергетическим переходам в молекулах воды. Чем больше была концентрация молекул, тем сильнее ослаблялся свет, проходящий через газовый разряд.
Чтобы повысить чувствительность к малым концентрациям воды, было необходимо увеличить путь, проходимый лазерным излучением в исследуемой области. Это было реализовано благодаря оптическому резонатору, состоящему из двух зеркал с очень высоким коэффициентом отражения (99,99 %) – прежде чем покинуть резонатор, свет проходил путь длиной в несколько километров. По итогам эксперимента оказалось, что результаты актинометрии и спектроскопии совпали в пределах погрешностей.
Слева фотография экспериментальной установки «Течь», справа – установка для совместных лазерных и актинометрических измерений.
Таким образом, ученые подтвердили, что актинометрия может быть успешно использована для контроля концентрации водяных паров в плазме. Возможным препятствием на пути метода пока что является использование ультрафиолетовой области спектра, в которой излучает исследуемый гидроксил OH. Дело в том, что при продолжительном воздействии ультрафиолета многие оптические элементы могут разрушаться. Решением проблемы может стать переход к измерению концентрации молекул водорода, однако в таком случае для начала придется связать концентрацию водорода и концентрацию водяного пара .
В то же время примененная для проверки актинометрии лазерная спектроскопия с использованием резонаторов также имеет широкий спектр возможных применений. Одно из них – измерение концентраций вредных веществ в атмосфере для контроля экологической ситуации. Подобная технология может быть использована в медицине: анализ состава выдоха человека способен выявить около 20 различных заболеваний. Наконец, метод может применяться в геологии: исследования атмосферы дадут людям возможность предсказывать поведение вулканов.