В журналах Nature и Science группа учёных из Вашингтонского университета сообщила об обнаружении признаков теоретически перспективных топологических кубитов — энионов (не путать с анионами). В своё время топологические квантовые вычисления и энионы как кубиты предложил использовать российский физик Алексей Китаев, но с практической и даже экспериментальной реализацией этих возможностей так и не сложилось. Новое открытие обещает с этим помочь.
В общем случае топологические квантовые вычисления предполагают использовать топологические кубиты, которые от обычных кубитов отличаются очень высокой устойчивостью к внешним возмущениям. Это означает, что квантовая система будет свободна от ошибок даже при довольно большом числе кубитов в системе. Китаев предложил на роль топологических кубитов двумерные топологические фазы с анионами в которых наблюдается дробный квантовый эффект Холла (FQAH, fractional quantum anomalous Hall).
«Топологические системы интересны потому, что в них это исправление ошибок встроено, они защищены на физическом уровне. К сожалению, с эффектом Холла пока не получается: полупроводниковые структуры, в которых наблюдается квантовый эффект Холла, не удается сделать достаточно хорошего качества. Это уже продолжается много лет, то есть прогресс есть, но не очень сильный», — рассказал сам Китаев в одном из интервью для «Радио Свобода» (внесено в реестр иноагентов).
И вот теперь о надёжном обнаружении признаков дробного эффекта Холла сообщили американские учёные. Открытие знаменует собой первый и многообещающий шаг в создании отказоустойчивого кубита, потому что состояния FQAH могут содержать энионы — странные «квазичастицы», которые имеют лишь часть заряда электрона. Некоторые типы анионов, как предсказывал Китаев, можно использовать для создания так называемых «топологически защищённых» кубитов, устойчивых к любым небольшим локальным возмущениям.
«Это действительно устанавливает новую парадигму для изучения в будущем квантовой физики с дробными возбуждениями»,
— сказал Сяодун Сюй (Xiaodong Xu), ведущий автор работ, который также является заслуженным профессором физики Boeing и профессором материаловедения и инженерии в Университете Вашингтона.
Добиться заявленного эффекта учёные смогли при постановке эксперимента с двумя «чешуйками» такого двумерного полупроводникового материала, как теллурид молибдена (MoTe2). Одну пластинку толщиной в атом наложили на другую и слегка повернули, чтобы атомные решётки образовали муар. В результате электроны выстроились в структуру, которая воспроизвела новую экзотическую форму материи со своими свойствами.
Например, структура проявила магнетизм без приложения внешнего магнитного поля. И если в обычных условиях для возникновения квантового эффекта Холла требуются сильнейшие магнитные поля, что ставит крест на практической ценности явления, то в новом состоянии вещества внутренний магнетизм привёл к возникновению этого эффекта и к появлению энионов (к «расщеплению» заряда взаимодействующих электронов на дробные и устойчивые части). Из этого возникает устойчивость кубитов и возможность их связанного или запутанного состояния — всё, что нужно для устойчивых квантовых вычислений.
Более того, предложенная платформа обещает помочь в исследовании других не менее экзотических квазичастиц, также предложенных Китаевым в кандидаты топологических кубитов — неабелевых энионов.
«Этот тип топологического кубита будет принципиально отличаться от тех, которые могут быть созданы сейчас, — сказал докторант физики Университета Вашингтона Эрик Андерсон (Eric Anderson), ведущий автор статьи в Science и соавтор статьи в Nature. — Странное поведение неабелевых энионов сделало бы их гораздо более надежными в качестве платформы квантовых вычислений».