Студенческий проект по изучению трехкомпонентного сплава привел к открытию нового типа сверхпроводника. Тройное соединение никеля, железа и циркония показало куполообразную форму температуры сверхпроводящего перехода.
Ученые ищут материалы, которые могут показывать нулевое сопротивление при более высоких температурах. Важным порогом исследователи считают сверхпроводимость при температуре 77 кельвин — с этого момента для охлаждения вместо жидкого гелия можно использовать более дешевый и простой в обращении жидкий азот.
Высокотемпературная сверхпроводимость может следовать другому механизму, нежели «обычные сверхпроводники», которые следуют устоявшимся теоретическим основам, в частности теории БКШ, Бардина — Купера — Шриффера.
Нетрадиционные сверхпроводники — многообещающее направление исследования высокотемпературных сверхпроводящих материалов. На них ученые возлагают надежды о передаче энергии без потерь в промышленных масштабах.
Исследователи из Токийского столичного университета открыли новый сверхпроводящий материал. Они объединили железо, никель и цирконий, чтобы создать новый цирконид переходного металла с различным соотношением железа к никелю. О результатах физики рассказали в статье для издания Journal of Alloys and Compounds.
Они впервые показали, что поликристаллический сплав железа, никеля и циркония проявляет сверхпроводящие свойства. Отдельно цирконид железа и цирконид никеля не являются сверхпроводящими в кристаллической форме, но их смесь значительно отличается по свойствам от отдельных веществ.
Новый сверхпроводник с признаками нетрадиционной сверхпроводимости(a) Кристаллическая структура материала, обнаруженного командой; (b) Длины повторяющихся элементарных ячеек как функция соотношения железа к никелю; (с) Температуры перехода как функция соотношения железа к никелю для намагниченности, удельной теплоемкости и удельного сопротивления, все из которых показывают одинаковую куполообразную форму / © Tokyo Metropolitan University
Новый сверхпроводник с признаками нетрадиционной сверхпроводимости
(a) Кристаллическая структура материала, обнаруженного командой; (b) Длины повторяющихся элементарных ячеек как функция соотношения железа к никелю; (с) Температуры перехода как функция соотношения железа к никелю для намагниченности, удельной теплоемкости и удельного сопротивления, все из которых показывают одинаковую куполообразную форму / © Tokyo Metropolitan University
Эксперименты с новым материалом начались как студенческий проект. Студенты создавали сплавы железа, никеля и циркония в разных соотношениях методом дуговой плавки. Созданный исследователями сплав имеет ту же кристаллическую структуру, что и тетрагональные циркониды переходных металлов — это семейство перспективных сверхпроводящих материалов. Ученые также обнаружили, что константы кристаллической решетки плавно изменяются в зависимости от соотношения железа к никелю.
Важно, что исследователи нашли область составов смеси, где температура сверхпроводящего перехода повышалась, а затем снова падала. Эта «куполообразная» форма — признак нетрадиционной сверхпроводимости.
Физики объяснили, что общего у сверхпроводника и полосок чешуи рыбы
Ученые МИЭМ НИУ ВШЭ и МФТИ показали, что в сверхпроводниках могут появляться очень сложные пространственные структуры, похожие на узоры, наблюдаемые в природе. Математически такие узоры описываются...
naked-science.ru
Дальнейшие эксперименты подтвердили, что намагничивание цирконида никеля демонстрирует похожую на сверхпроводящий магнитный переход аномалию, что также свидетельствует о нетрадиционной сверхпроводимости.
По словам ученых, найденный ими материал открывает новые возможности для изучения нетрадиционной сверхпроводимости. Они продолжат изучение материала и возможности создания следующего поколения сверхпроводящих устройств на никель-железо-циркониевом сплаве.