Специалисты Института экспериментальной минералогии РАН им. Д.С. Коржинского (ИЭМ РАН) совместно с коллегами из Института вулканологии и сейсмологии ДВО РАН, Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН), Центра глубоководных исследований Института океанологии Китайской академии наук (Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences), Университета Квебека (Sciences de la Terre, Université du Québec à Chicoutimi, Québec), Африканского исследовательского центра по изучению рудных систем Университета Витватерсранда (African Research Centre for Ore System Science (CORES), South Africa), Китайского университета геонаук (China University of Geosciences, Wuhan) и др. создали и впервые применили математическую модель, которая позволяет оценивать вклад прямой кристаллизации элементов платиновой группы из силикатного расплава с помощью подсчета наноразмерных частиц платинометальных сплавов, образующих включения в хромите. Работа носит фундаментальный характер, но теоретический опыт исследователей может ускорить создание систем подсчета содержания ультрарассеянных металлов (главным образом, золота и платиноидов) в горных породах и месторождениях. Результаты в Scientific Reports.
«95% мировой добычи меди, никеля и металлов платиновой группы, в которую входит сама платина, рутений, родий, палладий, осмий и иридий, сосредоточены в Южной Африке (Бушвельдский комплекс), Канаде (бассейн Садбери) и в России (Норильский район). Именно норильские магматические тела, или интрузии, являются крупнейшим в мире источником добычи палладия и вторым по добыче никеля и платины, – прокомментировал кандидат геолого-минералогических наук научный сотрудник ИЭМ РАН Иван Чайка. – Образуются такие месторождения из мантийных магм, которые поднимаются в земную кору. Дальше внутри интрузии начинается процесс кристаллизации. В определенный момент на этом этапе может произойти разделение жидкой фракции (расплава) на силикатную и сульфидную составляющую. В силу физико-химических принципов многие редкие металлы проявляют халькофильные свойства, то есть весьма эффективно концентрируются в сульфидном расплаве. Так появляются целые группы месторождений разных металлов: меди, никеля и элементов платиновой группы. Однако, в отсутствии сульфидного расплава металлы платиновой группы остаются в рассеянном виде при валовом содержании менее 10-8 % в магме. В силу этого их поведение в магмах до момента отделения сульфидной жидкости проследить крайне сложно. Считается, что в сульфид-недосыщенных системах платиноиды входят в состав минералов группы хромшпинели (хромит) как примесь в виде твердого раствора. Там они образуют мельчайшие частички собственных сплавов, которые также преимущественно встречаются в виде минеральных включений в хромите. Нам как исследователям интересно изучать все этапы формирования таких месторождений и то, где и как в них концентрируются металлы. Но если процесс, когда металлы собираются сульфидом, хорошо изучен и существуют способы его моделирования, в том числе численные, то как ведут себя платиноиды до того, как выделяется сульфид, не совсем понятно».
Моделирование дифференциации мантийных магм позволяет понять геологические и геохимические процессы, которые приводят к образованию месторождений металлов, а также разработать эффективные методы их переработки. Одна из задач данного исследования состояла в оценке относительного вклада прямой кристаллизации металлов платиновой группы. Для объекта исследования был выбран хромит, так как согласно более ранним работам именно этот минерал в силу кинетических факторов «собирает» в себя мельчайшие частички платинометальных сплавов.
«Платиноиды, например, железо-платиновые или осмий-иридиевые сплавы, могут концентрироваться в хромите в виде твердого раствора (химической примеси) и захватываться в него в виде мельчайших частичек собственных сплавов. Хотя ранее проводились работы, оценивающие роль вхождения платиноидов в хромит в виде твердого раствора, механизм прямой кристаллизации собственных минералов платиновых металлов упоминался как таковой, но не оценивался количественно. Наша работа в этом смысле является первой, – пояснил Иван Чайка. – В 2021 году мы ездили в экспедицию на Камчатку, где отобрали магматические вулканические породы – пикриты, которые идеально подходят для нашего исследования, так как обогащены металлами платиновой группы, не претерпели отделения сульфидной жидкости и в них же в большом количестве присутствует хромит. Часть металлов находится в хромите в виде твердого раствора, то есть металлы сидят прямо в кристаллической решетке минерала, а часть захватывается в него виде мелких включений сплавов. Дальше методом масс-спектрометрии с лазерной абляцией мы проанализировали примеси, которые есть в хромите, и поняли по сигналам спектрометра, что платиновые металлы распределены в нем неравномерно и, по-видимому, часто образуют собственные включения. Далее мы захотели посмотреть эти включения “вживую”, на электронном микроскопе, а не только в виде всплесков сигналов масс-спектрометрии. Для этого мы выделили концентрат хромита из пород, используя гравитационное обогащение, наподобие того, как старатели добывают золото. После мы залили хромит эпоксидной смолой и сделали срезы, или шлифы, для микроскопических исследований. Электронная микроскопия показала, что на срезах 100 000 зерен хромита есть в среднем 5-10 включений платиновых сплавов, что немного, но уже хорошо. Хотя мы ожидали, что их будет больше, этого было достаточно, чтобы вытянуть из имеющейся информации что-то количественное. Для этого мы применили и немного модернизировали принцип Делеса».
Принцип Делеса был сформулирован в XIX в. и широко применяется в петрографии – науке, изучающей состав горных пород. Он гласит, что при равномерном и случайном распределении неоднородностей, в данном случае включений металлов, их общее количество в объеме будет равно отношению площадей одной фазы к другой. Этот принцип очень полезен, так как в препаратах пород и минералов (шлифах) наблюдаются не полностью минералы и металлические включения в них, а только их плоские сечения. Принцип Делеса позволяет восстановить среднее сечение каждой структуры в шлифе и определить их относительное содержание. В данном случае специалистов интересовало отношение объема микровключений платиновых металлов к объему хромита, который их содержит. В ИЯФ СО РАН предложили ввести в исследование математический аппарат и при помощи компьютерного моделирования рассчитать, какую ошибку можно ожидать, проводя количественный анализ на основании небольшой статистики. Таким образом принцип Делеса был адаптирован под задачу.
«Принцип Делесса работает точно, только если определить относительные площади включений по всем шлифам, в противном случае можно только получить оценку, – прокомментировал младший научный сотрудник ИЯФ СО РАН Сергей Константинов. – А здесь сложность заключалась еще и в том, что и самих шлифов было немного, и включений металлов платиновой группы тоже – всего 19 штук на 200 000 хромитов. Условно, на одном квадратном метре поверхности шлифа доли квадратных миллиметров включений. Встал вопрос, а как правильно оценить общее количество платиновых включений и их распределение во всей породе, и какая будет ошибка измерений. Для этого мы провели компьютерное моделирование с учетом предложенных условий: редкое известное распределение включений в хромите, их случайная начальная ориентация в пространстве, а значит учет всех возможных положений включений. Также мы увидели в этой модели последствия “наггет эффекта”, который заключается в объемном доминировании больших включений, которых очень мало, но основной вклад в объем вносят именно они. Соответственно, если при исследовании шлифа вы не обнаружили такой “наггет”, значит вы сильно ошиблись в оценке относительного объема включений. В данном исследовании среди 19 маленьких включений было 2-3 больших, мы их учли и снизили еще и систематическую погрешность в определении площади включений. В итоге для 19 включений металлов платиновой группы мы получили ошибку измерения 30%».
По словам Ивана Чайки, в данной работе впервые была проведена оценка прямого вклада кристаллизации металлов платиновой группы в их баланс в сульфид-недосыщенных магмах, и главный ее результат состоит именно в развитии методов изучения этого геологического процесса.
«Мы всегда хотим, чтобы исследование имело немедленное практическое применение, но пока что мы говорим об очень хорошей методологической подвижке в плане изучения геохимии ультраредких элементов в магматическом процессе. Я был поражен результатом и сперва не верил, что такое, на первый взгляд, небольшое количество индивидуальных измерений при непараметрическом распределении величины может дать погрешность, сопоставимую с погрешностью для сертифицированных методов анализа в геохимии ультраредких элементов», – добавил он.