Ученые из московского Физтеха и Московского университета нашли способ создать новый тип сверхпроводящей памяти, которая работает в сотни раз быстрее, чем существующие сегодня типы запоминающих устройств, говорится в статье, опубликованной в журнале Applied Physics Letters.
"Предложенная нами схема работы ячейки памяти не требует затрат времени на процессы намагничивания и размагничивания. Благодаря этому операции чтения и записи занимают лишь сотни пикосекунд, в зависимости от материалов и геометрии конкретной системы, в то время как традиционные схемы требуют в сотни и даже тысячи раз больше времени",
— заявил Александр Голубов из МФТИ в Долгопрудном.
Голубов и его коллеги предлагают делать элементарные ячейки памяти на основе квантовых эффектов в так называемых переходах Джозефсона — "сэндвичах" из двух кусочков сверхпроводника и диэлектрика, чье существования было предсказано в 1960-х годах британским физиком Брайаном Джозефсоном.
В зависимости от силы магнитного поля, окружающего такой "бутерброд", электроны могут "перепрыгивать" из одного слоя сверхпроводника в другой, проходя сквозь диэлектрик. Данный эффект ученые применяют для создания сверхчувствительных датчиков магнитного поля, а также экспериментальных вычислительных устройств и запоминающих устройств, в том числе и памяти для будущих квантовых компьютеров.
Как отмечает Голубов, традиционно для "записи" информации в ячейки памяти на базе переходов Джозефсона применяются магнитные поля.
В элементах памяти на их основе информация кодируется в направлении вектора магнитного поля в ферромагнетике. Но у таких схем есть два принципиальных недостатка: во-первых, невысокая плотность "упаковки" ячеек памяти — на плату нужно наносить дополнительные цепи для их подпитки при считывания или записи информации, а во-вторых, вектор намагниченности нельзя менять быстро, что ограничивает скорость записи.
Для переключения битов из "нуля" в "единицу" и обратно российские ученые предлагают использовать инъекционные токи, протекающие через один из слоев сверхпроводника. Таким образом, считывать состояния можно будет с помощью тока, который проходит через всю структуру. Подобные операции требуют в сотни раз меньше времени, чем измерение намагниченности или перемагничивание ферромагнетика.
"Кроме того, для нашей схемы требуется только один слой ферромагнетика, что позволяет адаптировать ее к так называемым одноквантовым логическим схемам, а значит в создании абсолютно новой архитектуры процессора нет нужды. Компьютер, основанный на одноквантовой логике, может иметь тактовую частоту в сотни гигагерц, при том, что его энергопотребление ниже в десятки раз",
— заключает Голубов.