6 апреля 2018

Новые опыты ЦЕРН углубили загадку отсутствия антиматерии во Вселенной

Физики провели первые точные замеры того, как свет взаимодействует с частицами антиматерии, и не нашли существенных различий в ее поведении по сравнению с обычной материей, что в очередной раз заставило ученых гадать, почему существует Вселенная. Их выводы были опубликованы в журналеNature.

"Это первые реальные спектроскопические измерения свойств антиматерии, полученные при помощи лазеров. Сверхвысокая точность наших последних замеров стала главным достижением для нашей команды. Мы 30 лет пытались достичь этой планки, и нам наконец-то удалось реализовать эту мечту", 

— заявил Джеффри Хангст (Jeffrey Hangst), официальный представитель коллаборации ALPHA.

Как сегодня считают ученые, в первые мгновения после Большого взрыва возникло равное количество материи и антиматерии. При этом Стандартная модель физики говорит о том, что свойства частиц антиматерии зеркально повторяют характеристики своих близнецов, за исключением заряда. Иначе говоря, химические и физические свойства атомов антиматерии и материи должны быть идентичными.

Так как материя и антиматерия аннигилируют при столкновении, во время рождения Вселенной их частицы должны были уничтожить друг друга, лишив мироздание всех запасов и материи, и антиматерии. Поэтому возникает вопрос — куда "пропала" антиматерия и почему существует Вселенная.

Считается, что одна из причин "асимметрии материи" может заключаться в существовании небольших, но достаточно существенных различий в устройстве и свойствах частиц антиматерии. За последние годы физики нашли несколько намеков на то, что такие различия, например в массе протонов и антипротонов, все же существуют, однако их точное изменение затрудняется низкой точностью приборов и микроскопическими масштабами этой асимметрии.

Ангст и его коллеги уже много лет пытаются найти намеки на различия в свойствах материи и антиматерии, используя прибор ALPHA-2 – специальную ловушку для позитронов и антипротонов, заставляющую их объединяться и образовать одиночные атомы антиматерии. Благодаря абсолютной изоляции, атомы антиматерии могут существовать в этой ловушке несколько дней, не распадаясь и не аннигилируя.

Команда ALPHA давно пытается измерить спектр атомов антиводорода, сравнение которого с аналогичными данными для водорода покажет, одинаково ли свет взаимодействует с двумя формами материи, и есть ли даже самые небольшие различия в массе их частиц.

Первые результаты такого рода были получены шесть лет и два года назад, однако эти замеры не были точными из-за того, что они проводились не напрямую, а косвенными путями, наблюдая за последствиями столкновения частиц антиматерии и материи. Ученые были вынуждены действовать так из-за того, что атомов антиводорода было слишком мало. Это мешало поиску возможных следов "новой физики" и раскрытию загадки пропажи антиматерии.

Ангст и его коллеги смогли решить эту проблему, модифицировав структуру ловушки таким образом, что она позволяла им облучать антиводород сразу семью типами лазерных лучей. Объединив картинки, полученные в ходе подобных  "обстрелов", ученые смогли повысить точность замеров в 100 раз и достичь уровня погрешности, не превышающего две части на триллион. Это всего на три порядка меньше точности, достигнутой при "обстреле" водорода.

Как и в прошлые два раза, спектры материи и антиматерии полностью совпали, что говорит о том, что они одинаково взаимодействуют со светом и, предположительно, имеют идентичную массу. Вкупе с другими недавними замерами прочих свойств антипротонов, это открытие заставляет ученых все больше задумываться о том, где "прячутся" различия между материей и антиматерией.

Первые ответы на эти вопросы, как надеются Ангст и его коллеги, будут получены очень скоро, когда ALPHA-2 будет модернизирован и расширен, что позволит повысить точность замеров спектра на несколько порядков и приблизиться к разгадке тайны существования Вселенной.