Американские физики уточнили величину сверхтонкого расщепления уровня 2S атома водорода с помощью радиочастотного метода Рамзея. Вычисленная в результате этого комбинация расщеплений 1S и 2S уровней оказалась в хорошем согласии с теоретическими оценками, выполненными в рамках квантовой электродинамики. Исследование опубликовано в Physical Review Letters.
Простейший атом, состоящий лишь из протона и электрона — атом водорода — наилучшим образом подходит для точных проверок теории электромагнитного взаимодействия. Для этого физики измеряют интервалы между энергетическими уровнями или иные свойства атома, а затем пытаются воспроизвести их с помощью вычислений.
На заре квантовой физики для предсказания спектра атома водорода было достаточно нерелятивистской квантовой механики. Затем ученые научились различать более тонкие эффекты: релятивизм, спин-орбитальное взаимодействие и, наконец, влияние квантовых флуктуаций, известное как лэмбовский сдвиг. Дальнейшее уточнение потребовало учета взаимодействия электронных оболочек со спином ядра (сверхтонкая структура), а также поправок на конечный размер ядра. Последнее, с одной стороны, позволило определить размер протона спектроскопическими методами, но, с другой, стало препятствием к точным тестам квантовой электродинамики, поскольку радиус протона сам по себе стал объектом большой дискуссии. Подробнее об этой проблеме мы рассказывали в материале «Щель в доспехах».
Обойти ее могло бы измерение определенных комбинаций частот, в которых вклады от размера ядра уничтожаются. Пример такой комбинации — разность между восьмикратным значением сверхтонкого расщепления уровня 2S1/2 и однократным уровня 1S1/2 атома водорода. Вычислению этой величины посвящена работа Райана Буллиса (Ryan Bullis) и его коллег из университета Колорадо.
При измерении указанной комбинации главным источником ошибок остается неопределенность сверхтонкой структуры уровня 2S. Фактически, измерение этого расщепления и было основной задачей физиков. Для этого они использовали метод Рамзея, выполненный в радичастотном диапазоне.
Суть эксперимента заключалась в пропускании пучка атомов водорода, предварительно возбужденных двухфотонным поглощением в состояние 2S1/2 (F=0), через сложную катушку, создающую переменное поле с частотой, близкой к 177 мегагерцам. Такое радиочастотное поле стимулирует переходы в сверхтонкий подуровень с F=1 — физики считали атомы в таком состоянии на выходе из катушки с помощью каналового электронного умножителя. Чтобы оставшиеся на F=0 подуровне атомы не влияли на сигнал, авторы переводили их на 2P уровень с помощью дополнительного переменного электрического поля с частотой 910 мегагерц, создаваемого конденсатором.
В ходе эксперимента физики слегка меняли частоту колебания магнитного поля и следили за поведением сигнала — количества атомов на F=1 подуровне. Нужный интервал проявил себя в виде резонанса на определенной частоте. После поправок на систематические эффекты значение этой частоты оказалось равным 177 556 838,87(85) герца. Этому значению соответствует величина комбинации, равная 48 959,2(6,8) герца, что хорошо согласуется с теорией — 48 954,1(2,3) герца.
Новое значение оказалось в восемь раз точнее, чем предыдущий эксперимент, проведенный оптическими методами, и в 60 раз точнее, чем прошлое измерение с помощью радиочастотных полей. В перспективе авторы планируют еще больше увеличить точность измерения, сделав катушку больше.