25 апреля 2012

Облучение вместо скальпеля

В российские вузы приходит новая специальность, с которой большинство экспертов связывают принципиально новый этап в развитии мировой медицины – медицинский физик. О новейших технологиях, применяемых в современной медицине, и проекте «Центр подготовки медицинских физиков» при участии МГУ и МНИОИ им. Герцена в своей лекции рассказывает кандидат биологических наук Ирина Бочарова

Мы являемся свидетелями удивительного процесса: на наших глазах медицина меняется. Если раньше основным оружием врачей были медикаментозные и хирургические методы, то с каждым годом медицинская физика приобретает все большее значение. Благодаря высоким технологиям, высокоточное облучение теперь часто является более безопасным для больного, чем хирургическое вмешательство.

Уже сегодня медицина имеет в своем распоряжении большой арсенал физических технологий и оборудования для диагностики, профилактики и терапии заболеваний. Их количество будет только увеличиваться.

Используя различные физические излучения, специалисты эффективно диагностируют и лечат многие серьезные заболевания, например онкологические (опухоли головного мозга, головы и шеи, рак легкого, пищевода, молочных желез, почек, гинекологической сферы и др.).

Вот далеко не полный список физических технологий, которые активно применяются в медицине:

Для диагностики используются ультразвуковое исследование, рентгенодиагностика, рентгеновская компьютерная томография, магнитно-резонансная томография, однофотонная эмиссионно-компьютерная томография, позитронная эмиссионная томография и другие средства медицинской визуализации.

Для лечения пациентов успешно применяются радиохирургические системы, ускорители, лазеры, реакторы, нейтронные генераторы, открытые и закрытые радионуклидные источники, магнитные поля и опять же ультразвук.

Некоторые из этих технологий широко распространены и активно используются в медицинской практике, а какие-то являются абсолютно новаторскими и только начинают применяться в массовом порядке. Например, УЗИ, рентген и томография знакомы практически каждому из нас.

В современном мире сложно найти человека, который ни разу не проходил хотя бы одну из этих процедур.

Их популярность обусловлена в том числе и сравнительной простотой их проведения. Специалистам, имеющим медицинское образование, несложно разобраться в технологии проведения, например, рентгенографии. Однако технологии развиваются настолько стремительно, что для успешной работы на современном высокотехнологическом оборудовании только медицинского или только физического образования уже недостаточно.

Возьмем, например, стереотаксическую радиохирургию и радиохирургические системы, которые в ней используются. Несмотря на название, процедура не является операцией, то есть речь идет о неинвазивной хирургии. Термин относится к технике, в которой высокая доза излучения однократно подводится к мишени облучения. Мишень уничтожается без повреждения окружающих тканей.

Радиохирургия является важной альтернативой инвазивной хирургии, особенно при опухолях и аномалиях кровеносных сосудов, расположенных глубоко в мозге или вблизи жизненно важных его областей.

Большой интерес представляет принцип действия радиохирургической системы на примере ее «золотого стандарта» – системы «гамма-нож». Это революционная радиохирургическая система, в которой используются новейшие достижения медицинской радиологии, нейрохирургии и робототехники. Подобно нейрохирургической операции, процедура лечения проводится однократно, однако при этом нет необходимости проводить трепанацию черепа, а процедура проходит практически безболезненно.

«Гамма-нож» состоит из облучательного блока с системой позиционирования пациента и станции управления, с консолью оператора и офисным компьютером. Эффективная неинвазивная терапия проводится при помощи пучков ионизирующего излучения, обладающих достаточной проникающей способностью для доступа даже в наиболее глубоко расположенные мишени. Хирургический эффект достигается подведением предписанной дозы (импульсов) излучения в соответствии с заранее подготовленным планом лечения в точно определенную мишень внутри черепа. Тем самым ткань опухоли поражается при сохранении окружающей здоровой ткани.

Ионизирующее излучение исходит из 192 источников кобальта-60, размещенных в 8 секторах в защищенном облучательном блоке. Под его действием происходит разрушение ДНК опухолевых клеток, которые теряют способность к делению и постепенно погибают. Некоторые опухоли полностью «рассасываются» и исчезают, некоторые остаются в прежних размерах либо уменьшаются и больше никогда не растут.

Продолжительность всей процедуры составляет несколько часов (от 2 до 4). Лечение с применением «гамма-ножа» хорошо переносится, имеет низкий уровень побочных реакций и осложнений, позволяет пациентам быстро вернуться к нормальной жизнедеятельности, в большинстве случаев не требует госпитализации в специализированный стационар и может проводиться амбулаторно. За время применения данного метода около миллиона пациентов во всем мире прошли лечение с применением «гамма-ножа».

Лучевая терапия – еще одна область, где медицина идет рука об руку с физикой.

Это хорошо видно на примере медицинских ускорителей, аппаратов, которые используются для дистанционной лучевой терапии. Медицинские ускорители на сегодняшний день являются наиболее универсальными и позволяют реализовывать все существующие методики, начиная от наиболее простых – конвенциональных паллиативных, и заканчивая самыми высокотехнологичными, включая радиохирургические, при наличии соответствующей конфигурации аппарата и его принадлежностей.

Последнее десятилетие характеризуется значительными достижениями в технике планирования и проведения лучевой терапии с высокой точностью. Решение обратной задачи и виртуальная симуляция, к которым добавилась возможность использовать многофункциональные изображения (КТ, МРТ и ПЭТ) анатомии пациента произвели революцию в планировании и облучении.

Самые современные ускорители оснащены уникальными роботизированными системами укладки пациента с несколькими системами свободы для корректировки любого отклонения мишени от заданного положения.

Это позволяет проводить лучевую терапию с высокой точностью. Многолепестковый коллиматор (МЛК) дает возможность соотносить планируемый дозовый объем форме облучаемой мишени, за счет чего окружающие мишень органы получают дозу, не превышающую толерантную. Ускоритель используется в составе комплекса, в который входит также оборудование для диагностики, топометрии, планирования лучевой терапии, верификации и др. Для размещения ускорителя необходимо специальное защитное процедурное помещение (каньон).

Отдельную роль в современной лучевой терапии играет клиническая дозиметрия. Ее основное назначение – подведение заданной дозы к выбранной врачом мишени с хорошей точностью при минимальном поражении здоровых органов и тканей. Погрешность подведения дозы не должна превышать 5–7%.

Для правильного и эффективного использования сложной аппаратуры, создающей терапевтические пучки излучения, для проведения клинической дозиметрии и планирования облучения требуются специалисты, обладающие знаниями в области фундаментальной и прикладной физики и в специальных областях, касающихся применения излучения для диагностики и лечения онкологических больных. Эта новая область науки называется медицинская физика, а специалисты, работающие в ней, – медицинскими физиками.