Сортировать
Сортировать
Теплопрово́дность — способность материальных тел проводить тепловую энергию от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Различают стационарный и нестационарный процессы теплопроводности в твердом теле. Стационарный процесс характеризуется неизменными во времени параметрами процесса. Такой процесс устанавливается при длительном поддержании температур теплообменивающихся сред на одном и том же уровне. Нестационарный процесс представляет собой неустановившийся тепловой процесс в телах и средах, характеризуемый изменением температуры в пространстве и во времени. Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости. Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K). Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.
ТРЕЩИНОСТОЙКОСТЬ — способность материала сопротивляться развитию трещин (разрушению) при однократном, циклическом и замедленном разрушении. В механике разрушения к основным характеристикам трещиностойкости относят: критическое значение коэффициента интенсивности напряжений; критическое раскрытие берегов трещины в тупиковой части; работу, которую нужно затратить на образование трещины. Наиболее надежную оценку трещиностойкости материалов дают испытания образцов с предварительно нанесенной усталостной трещиной, поскольку это наиболее распространенный опасный дефект конструкции. Рост трещины начинается, если коэффициент интенсивности напряжения или его размах (при циклическом нагружении), превышающий некоторый порог, и состоит из трех стадий: нарастающей скорости роста, стабильным относительно медленным ее распространением и ускорением развития, заканчивающегося разрушением. Кинетику разрушения описывают диаграммами в координатах: длина трещины — число циклов или время при циклическом нагружении; длина трещины — время при длительности статичного нагружения. Кинетические параметры разрушения позволяют прогнозировать работоспоспособность материалов в конструкциях. Способы повышения трещиностойкости металлов и сплавов включают: рациональное микролегирование (выбор сплава); формирование оптимальных микроструктур; уменьшение содержания нежелательных примесей, особенно легкоплавких и сегрегирующих на границах зерен; оптимальные режимы ТМО, формирующие наиболее желательныей тип и параметры микроструктуры; создание поверхностого слоя, строение и напряженное состояние которого затрудняет зарождение в нем микротрещин (мелкое зерно, сжимающие напряжения и т.п.).
Токопровод — электротехническое устройство для передачи электроэнергии на малые расстояния (например, от генератора к повышающему трансформатору). Согласно СТО «ФСК ЕЭС», токопровод с литой (твёрдой) изоляцией — это устройство, предназначенное для передачи и распределения электроэнергии, состоящее из проводников, изолированных от заземлённых частей твёрдыми диэлектрическими материалами, защитных оболочек, ответвительных устройств, поддерживающих и опорных конструкций. Сечение токопровода определяется величиной максимально допустимого тока. Оно может быть как сплошным, так и полым.