Сотрудники Лаборатории теоретической физики ОИЯИ вывели наиболее общие формулы, которые позволяют получать многопетлевые ренормгрупповые уравнения в произвольном обобщении Стандартной модели (СМ) без необходимости явного расчета миллионов диаграмм Фейнмана, возникающих в старших порядках теории возмущения.
Благодаря работе БАК мы знаем, что Стандартная модель элементарных частиц прекрасно описывает огромное количество процессов на масштабах энергий доступных современным ускорителям. В Стандартной модели имеется восемнадцать параметров, описывающих взаимодействия фермионов (кварков и лептонов), векторных (фотон, W/Z-бозоны) и скалярных (хиггс) бозонов. Например, среди них — «константа» сильного взаимодействия, определяющая эффективную силу взаимодействия кварков и антикварков. Или хорошо известная электромагнитная константа, связанная с электрическим зарядом. Задав их, или лучше сказать измерив, можно делать предсказания.
Однако, ученые уже много лет ищут сигналы новой физики за пределами Стандартной модели. Теоретики пытаются построить обобщения CМ, а экспериментаторы стремятся найти следы новых частиц и выявить новые взаимодействия.
Если вы расширяете СМ, то добавляете новые параметры. Например, можно предположить существование более тяжелого аналога Z-бозона, взаимодействие которого с другими частицами задается новой калибровочной «константой» (обычно обозначаются как g). Или добавить несколько бозонов Хиггса, взаимодействие которых друг с другом, а также с кварками и лептонами будет задаваться «константами» самодействия (L) и Юкавскими «константами» (y), соответственно.
«Часто важно понять, что происходит с моделью, если попытаться экстраполировать ее в область больших энергий, не доступных современным (и возможно даже будущим) ускорителям. Или, наоборот, задав модель Новой физики на очень высоком масштабе энергий (обычно предполагается, что в этом случае модель обладает большей симметрией, чем СМ), интересно понять, какие отклонения от предсказаний СМ можно измерить в экспериментах», — рассказал Александр Бедняков, начальник сектора квантовой теории поля ЛТФ ОИЯИ, один из авторов работы.
«Ренормгрупповые уравнения показывают, как, благодаря рождению виртуальных частиц, происходит экранировка или антиэкранировка зарядов при изменении энергетического масштаба (ꓩ). Такого рода эффекты имеют универсальную природу, и мы пытаемся учитывать их в наших расчетах. Каждая новая петля соответствуют рождению и поглощению какой-то виртуальной частицы. Чем сложнее модель, тем мы больше имеем различных вариантов», — пояснил Александр. Он добавил, что для того, чтобы найти зависимость «зарядов» от масштаба в конкретной модели необходимо проводить трудоемкие вычисления диаграмм Фейнмана.
Выполненные в ходе работы сложные вычисления были преобразованы в формулы, представляющие собой достаточно простые дифференциальные уравнения. Задав значения параметров (силу взаимодействия) на одном масштабе, можно найти их значения на другом масштабе. На Рис. 2 схематично показаны полученные в цикле работ наиболее общие ренормгрупповые уравнения для калибровочных, юкавский «констант», а также для самодействия скалярных бозонов. Видно, что число слагаемых в формулах растет вместе с порядком теории возмущений. Каждое слагаемое можно представить в виде диаграммы Фейнмана, где сплошные линии соответствуют фермионам, волнистые — калибровочным бозонам, а пунктирные — скалярным частицам.
Готовые уравнения удобны тем, что все расчеты сложных интегралов, соответствующих диаграммам, уже проведены. Достаточно лишь задать модель, т. е. перечислить все частицы и выписать лагранжиан — функцию, описывающую их квантовые числа и взаимодействия.
Эти уравнения могут также применяться неспециалистами в петлевых вычислениях: например, их могут использовать физики-теоретики для анализа Новой физики. Также эти готовые формулы находят свое применение в физике конденсированного состояния – в теории фазовых переходов второго рода для расчета различных критических индексов. Этот результат был отмечен как один из самых ярких, полученных ЛТФ ОИЯИ в 2021 году. Авторы цикла работ, посвященных этой тематике, Александр Бедняков и Андрей Пикельнер, были удостоены первой Премии ОИЯИ за 2021 год в категории «За научно-исследовательские теоретические работы».
«Другой важный результат цикла тесно связан с квантовой хромодинамикой (КХД), описывающей кварки, глюоны и их взаимодействия. Мы верим, что квантовая хромодинамика должна работать как при больших, так и при малых энергиях», — продолжил Александр. На больших расстояниях взаимодействие между кварками становится настолько сильным, что использование стандартной теории возмущений затруднено. На помощь приходят компьютерные вычисления на дискретной евклидовой пространственно-временной решетке. Такими расчетами занимается, в частности, коллаборация High Precision QCD (Quantum chromodynamics), в которую входят физики-теоретики научных центров Америки, Англии, Италии, Японии, Испании. Среди всего прочего они извлекают из решеточных данных ключевые параметры КХД — массы кварков и постоянную сильного взаимодействия.
«Можно взять массу кварка или константу сильного взаимодействия измеренные при высоких энергиях и сравнить ее с тем, что извлекают на решетке. Если сходится – это означает, что квантовая хромодинамика «работает». Если не сходится – возникает вопрос: надо ли модифицировать модель или всего лишь улучшить точность теоретических расчетов. Часто именно высокая точность позволяет найти небольшие отклонения — возможные признаки Новой физики», — прокомментировал исследователь. Важным нюансом здесь является то, что ту величину, которую извлекают из решеточных данных, часто нельзя непосредственно сравнивать с аналогичной, но используемой в физике высоких энергий. «Этот произвол «заложен» в теорию перенормировок, но мы можем его контролировать в рамках теории возмущений. Именно такого рода пересчетные формулы и были найдены нами в трехпетлевом приближении. Нам очень приятно, что наши расчеты были незамедлительно использованы коллаборацией HPQCD для нового рекорда точности в определении массы очарованного кварка», — подытожил Александр Бедняков.