Группа научных коммуникаций Лаборатории ядерных проблем ОИЯИ побывала в Центре удаленного управления (Remote Operation Center, ROC-Dubna) нейтринного эксперимента NOvA — эксперимента с длинной базой по исследованию осцилляций нейтрино, во время которого сформированный пучок частиц отправляется на дальний детектор, расположенный на расстоянии 810 км от источника.
Рассказывает руководитель ЦентраАлександр Антошкин:
«Основные элементы установки эксперимента — это ускоритель и ближний детектор, которые находятся в Fermilab (США), а также дальний детектор, который расположен в штате Миннесота. Первичный пучок с ускорителя состоит в основном из мюонных нейтрино. Затем в процессе движения часть мюонных нейтрино осциллирует, превращаясь в электронные и тау-нейтрино. Ближний и дальний детекторы эксперимента регистрируют состав нейтрино в пучке, собирая статистику, которая показывает, сколько мюонных нейтрино сохранили свой тип, а сколько проосциллировали в электронные и тау-нейтрино».
Нейтрино настолько слабо взаимодействуют с материей, что для прохождения пучка от ближнего детектора к дальнему не потребовалось строить туннель: частицы путешествуют прямо сквозь толщу Земли. Важная особенность этих детекторов в высокой сегментированности: они состоят из заполненных жидким сцинтиллятором ячеек-трубок, собранных в блоки в разных плоскостях вдоль оси пучка. Это позволяет регистрировать не только факт взаимодействия нейтрино и других частиц с веществом детектора, но и определять направление, откуда прилетели частицы.
Контроль за сбором данных в эксперименте требуется вести круглосуточно и ежеминутно. Поэтому смены наблюдения разделены между участниками коллаборации эксперимента. Сначала наблюдение велось только из Fermilab, затем стало понятно, что можно организовать и удаленные центры управления.
Пять лет назад дубненский ROC-Dubna стал первым центром за пределами США, и с тех пор он успешно наблюдает за ходом эксперимента. Кроме того, дубненская команда участвует в обработке и анализе данных с детекторов, а также совершенствует аппаратуру эксперимента.
Основная цель исследований – более точное измерение параметров нейтринных осцилляций. Однако эксперимент будет иметь и важную практическую пользу.
Александр Антошкин:
«Одним из практических результатов развития нейтринной физики станет возможность исследовать недра нашей планеты: нейтрино могут свободно проникать сквозь толщу земного шара. И не только. Например, можно наблюдать за активной зоной атомных реакторов на предмет наработки плутония, а также исследовать далекие астрономические объекты».
Остается добавить, что наблюдения за экспериментом с помощью удаленных центров управления во время пандемии COVID-19 не прерывались, смены велись по расписанию, так же, как и обработка данных эксперимента.