В марте научно-исследовательское твэльно-топливное отделение Высокотехнологического научно-исследовательского института неорганических материалов им. Бочвара (ВНИИНМ) отметило юбилей — 70 лет со дня образования лаборатории Л‑18, из которой оно и выросло. Ученые разработали четыре поколения топлива для атомных подлодок, многократно повысив их ресурс. Сегодня здесь создают твэлы для атомных ледоколов, малых АЭС и плавучих энергоблоков. Мы проследили этапы топливной эволюции.
Поколение 0: нержавейка, стержень, таблетки
Как известно, идеологом создания первой советской атомной подводной лодки (АПЛ) был академик Анатолий Александров. Задачу разработать топливо для АПЛ он поручил коллегам по Институту атомной энергии (ИАЭ, сейчас НИЦ «Курчатовский институт»). Ученые пошли по простому пути — попытались приспособить топливо для энергетических реакторов под транспортные. Для оболочки тепловыделяющих элементов предложили использовать нержавеющую сталь, в качестве топливной композиции выбрали диоксид урана в виде спеченных таблеток. Тестировали и другой вариант — виброуплотненную крупку диоксида урана, пропитанную свинцово-висмутовым сплавом, который при рабочей температуре находился в жидком состоянии. Конструкция твэла — стержень диаметром около 6 мм.
Но разработчики не учли условия работы транспортного реактора. Температура в активной зоне ниже, чем в энергетическом реакторе, постоянные перепады температуры, ведь подлодке требуется маневренность: как двигатель автомобиля, реактор должен быстро сбрасывать и набирать мощность. При этом в море заниматься перегрузкой топлива некогда — активная зона должна работать несколько месяцев, а лучше лет.
- Чтобы выгрузить всю зону и поставить новую, АПЛ нужно доставить на завод, вскрыть прочный корпус. Это слишком большие стратегические и экономические потери, — объясняет главный эксперт ВНИИНМ Александр Ватулин.
Активные зоны с топливом разработки ИАЭ на испытаниях показали очень низкий ресурс. Потом — разгерметизация зоны с выходом продуктов деления в теплоноситель. ВНИИНМ поручили разобраться, в чем проблема, и предложить приемлемый вариант топлива. Специально под эту задачу и была создана лаборатория Л‑18.
Поколение 1: вместо таблеток — интерметаллид
Ученые выяснили, что в разгерметизации виновато распухание топлива: под облучением топливный сердечник (активный объем твэла, набираемый из топливных таблеток) изменяет объем, потому что объем осколков деления больше исходного объема урана‑235. Оболочка из нержавеющей стали под воздействием потока быстрых нейтронов становится хрупкой. Даже небольшая деформация сердечников вызывала критический рост напряжения в оболочках, и они быстро разрушались. При разгерметизации твэлов с таблетками радиоактивность теплоносителя резко возрастала, при разгерметизации твэлов со свинцово-висмутовым сплавом возникала опасность вытекания сплава и пережога твэлов.
Твэлы, предложенные ИАЭ, были контейнерного типа, то есть без металлургической связи сердечника и оболочки. В них топливо нагревается до высокой температуры, и из-за наличия свободного объема под оболочкой идет термомеханическое взаимодействие сердечника с оболочкой при циклических изменениях температуры. Специалисты ВНИИНМ предложили другой тип тепловыделяющего элемента — дисперсионный.
Надо было обеспечить хорошее соединение сердечника с оболочкой, чтобы при изменениях мощности не возникали термические взаимодействия, которые, как в случае с таблеточным топливом, могут привести к быстрому разрушению. В дисперсионных твэлах частицы топлива распределяются в матрице с хорошей теплопроводностью, которая обеспечивает низкую рабочую температуру, — говорит Александр Ватулин.
В качестве матрицы выбрали сплав, обладающий хорошими литейными свойствами. Совместно с Машиностроительным заводом (МСЗ) разработали технологию изготовления дисперсионных твэлов, которая используется до сих пор.
- В оболочку засыпают частицы ядерного топлива. Все пространство между ними под давлением заполняют жидким матричным материалом, — поясняет Александр Ватулин.
Первые атомные подлодки работали на стержневых дисперсионных твэлах с оболочками из нержавеющей стали и интерметаллидным топливом. Ресурс активных зон с таким топливом был почти в два раза больше, чем у спроектированных в ИАЭ.
Поколение 2: вместо стержня — кольцо
К концу 1960‑х годов и этого атомному флоту уже было мало. Понадобились мощные реакторы с большим энергоресурсом. Продолжительность топливной кампании напрямую зависела от деформации оболочек. Специалисты ВНИИНМ предложили новую форму твэла, компенсирующую распухание сердечника, — кольцо.
-У кольцевого твэла две оболочки — наружная и внутренняя, между ними топливо. Преимущество было в том, что часть деформации от распухающего топлива перенаправлялась на внутреннюю оболочку, что позволяло разгрузить внешнюю, снизить деформацию и напряжение. Конструкция оказалась удачной, активные зоны с твэлами второго поколения прекрасно работали, — объясняет Александр Ватулин.
К тому времени у создателей топлива транспортных реакторов появилась прекрасная экспериментальная база — атомные ледоколы. «Вставки с экспериментальными твэлами делали сначала для ледокольного реактора и только потом разрабатывали опытную активную зону для АПЛ», — говорит директор научно-исследовательского твэльно-топливного отделения ВНИИНМ Геннадий Кулаков.
Поколение 3: вместо кольца — самодистанционирующийся элемент
Твэлы второго поколения исчерпали свои возможности в середине 1970‑х.
- Военные требовали: дайте активные зоны еще большей мощности, чтобы быстрее плыть, легче маневрировать, — рассказывает Александр Ватулин.
Для новых кораблей твэлы старой конструкции не подходили по теплофизике, так как имели недостаточную поверхность для отвода тепла. Кроме того, они не позволяли увеличить загрузку ядерного топлива. Ученые предложили более сложную конструкцию, при которой деформация растяжения меняется на деформацию изгиба, — самодистанционирующиеся твэлы. Такие твэлы имели большую поверхность теплосъема и могли устанавливаться без дистанционирующих решеток, ухудшающих отвод тепла.
- Энергоресурс был увеличен почти на 30 %, энергонапряженность и мощность активных зон тоже увеличились. Но оболочки из нержавеющей стали все равно подвергались охрупчиванию и коррозионному растрескиванию, таковы свойства этого материала под облучением, — отмечает Александр Ватулин
Поколение 4: вместо нержавейки — хромоникелевый сплав (ХНМ)
К концу 1980‑х стало ясно: если надо и дальше увеличивать ресурс и мощность активных зон транспортных реакторов, то со сталью работать нельзя. Пробовали делать оболочки из циркония, они отлично показали себя на атомных ледоколах. Но в АПЛ цирконий так и не пустили: испугались пароциркониевой реакции.
- Мы обратили внимание на хромоникелевые сплавы. Они использовались в радиохимической аппаратуре для переработки ОЯТ и были известны высокой коррозионной стойкостью. Стали проверять радиационную стойкость и стойкость к коррозионному растрескиванию под облучением. Поняли, что материал замечательный, — вспоминает Александр Ватулин.
Расчеты показали, что ресурс твэлов из ХНМ — десятки тысяч часов.
- Активная зона транспортного реактора работает несколько лет, в реальном масштабе времени провести ее испытания невозможно. Но созданные нами расчетные модели твэлов и методики ускоренных испытаний позволяют достоверно обосновывать ресурсные характеристики, — отмечает Александр Ватулин.
Не только подлодки
Сейчас больших заказов от ВМФ у твэльно-топливного отделения ВНИИНМ нет. «Слишком хорошее топливо сделали, лучше уже некуда», — шутит Геннадий Кулаков. Отделение сконцентрировалось на топливе для атомных ледоколов: разработаны техпроекты твэлов для универсального атомного ледокола (УАЛ) и перспективного атомохода проекта «Лидер». Для «Лидера» приняты проверенные решения: интерметаллид урана, самодистанционирующаяся конструкция, оболочка из ХНМ. Для УАЛа — цилиндрический твэл с компенсатором распухания (аналогично твэлам атомных ледоколов предыдущего поколения и ПАТЭС «Академик Ломоносов»).
Также в отделении создают топливо для малых АЭС и плавучих энергоблоков.
- Необычную задачу мы решали для ПАТЭС. Нужен был твэл с топливом, которое обеспечивает необходимый ресурс, но при этом степень его обогащения удовлетворяет требованиям МАГАТЭ по нераспространению ядерных материалов — не больше 20 %, ведь подобные ПАТЭС «Росатом» планирует экспортировать, — рассказывает Александр Ватулин.
В этом году в отделении разработали топливо для модернизированных АСММ. Такие построят для энергоснабжения Баимского горно-обогатительного комбината на Чукотке и золоторудного месторождения Кючус в Якутии. В работе — техпроект твэла для малого реактора «Шельф-М».