Сортировать
Сортировать
Начало проектирования – ноябрь 1956 года. Физический пуск – 7 июня 1961 года. Время эксплуатации – 1965–1969 гг. В 50-е годы, когда зарождалась атомная энергетика, появлялись невероятно смелые идеи. Одна из них – сделать самоходную атомную электростанцию для работы на Крайнем Севере. Первым эту мысль высказал «атомный» министр Ефим Славский. В 1955 году Ефим Павлович Славский посетил ленинградский Кировский завод. Именно в беседе с директором ЛКЗ И.М. Синевым впервые прозвучало предложение о разработке мобильной атомной электростанции, которая могла бы питать электроэнергией гражданские и военные объекты, расположенные в отдаленных районах Крайнего Севера и Сибири. Предложение Славского стало руководством к действию, и уже вскоре ЛКЗ в кооперации с Ярославским паровозостроительным заводом подготовил проекты атомного энергопоезда – передвижной АЭС небольшой мощности для транспортировки по железной дороге. Предусматривались два варианта – одноконтурная схема с газотурбинной установкой и схема с использованием паротурбинной установки самого локомотива. Вслед за этим к разработке идеи подключились и другие предприятия. Славский обладал неуемной пробивной энергией, да и полномочия у него были громадные – он поручил разработку проекта обнинскому ФЭИ (тогда еще «Лаборатории В»). Очень скоро, в 1957 году, эскизный проект передвижной станции был готов. Его авторы – Юрий Анатольевич Сергеев и Дмитрий Леонидович Бродер. Ученые предложили поставить свою электростанцию на гусеницы, сделав ее практически вездеходной. Идея казалась заманчивой: станция на гусеницах воим ходом подойдет к какому-то руднику, поселку, угольному разрезу и начнет обеспечивать его энергией. А через год-три перейдет на другое место. Зачем в условиях вечной мерзлоты строить стационарную станцию, когда можно обойтись более экономичным и прогрессивным вариантом? В «железе» проект воплотили на Кировском заводе в Ленинграде. Два года спустя было произведено специальное оборудование для постройки опытных образцов ТЭС-3. Установка ТЭС-З, введенная в эксплуатацию в 1961 г., являлась опытным образцом крупноблочной транспортабельной атомной электростанции небольшой мощности. Она предназначалась для накопления экспериментальных данных, необходимых при разработке передвижных атомных электростанций подобного типа, которые могут быть использованы для снабжения электроэнергией труднодоступных и удаленных районов страны. Станция выполнена по двухконтурной схеме с гетерогенным водо-водяным реактором тепловой мощностью 8,8 тыс. кВт, охлаждаемым водой под давлением 130 ат при температурах на входе реактора 275 °С и на выходе 300 °С. Расход воды в первом контуре установки 320 т/ч. В активной зоне реактора, имеющей форму цилиндра высотой 600 и диаметром 660 мм, размещены 74 тепловыделяющие сборки с высокообогащенным ураном. Средняя тепловая нагрузка в реакторе равна 0,6·106 ккал/(м2·ч), максимальная – 1,3·106 ккал/(м2·ч). Длительность кампании реактора 250 суток, а при частичной догрузке тепловыделяющих элементов – до 1 года. Мощность турбогенератора станции 1,5 тыс. кВт, однако три ее парогенератора могут давать пар давлением 20 ат и температурой 285 °С в количестве, достаточном для получения мощности на валу турбины до 2 тыс. кВт. Все оборудование станции размещено на четырех гусеничных самоходных транспортерах. На двух самоходах находится реакторная парогенераторная установка, на двух других – турбогенератор, пульт управления и вспомогательное оборудование. Общий вес оборудования, установленного на самоходах, около 210 тонн. Для защиты от излучения во время работы вокруг первых двух самоходов сооружается на месте эксплуатации земляная защита. Кроме того, реакторный самоход снабжен транспортируемой биологической защитой, позволяющей производить монтажные и демонтажные работы уже через несколько часов после остановки реактора, а также перевозить реактор с частично или полностью выгоревшей активной зоной. При транспортировке охлаждение реактора осуществляется с помощью воздушного радиатора, обеспечивающего съем до 0,3% номинальной мощности установки. Эксплуатация ТЭС-3 подтвердила ее работоспособность, позволила уточнить принципы АЭС и АТЭЦ для дальних районов, впервые осуществить опыт эксплуатации АЭС в режиме саморегулирования.
Транзи́стор (англ. transistor, придуманный в 1947 году акроним — от англ. transfer + англ. resistor — для устройства пропуска тока через сопротивление), полупроводнико́вый трио́д — электронный компонент из полупроводникового материала, способный небольшим входным сигналом управлять значительным током в выходной цепи, что позволяет использовать его для усиления, генерирования, коммутации и преобразования электрических сигналов. В настоящее время транзистор является основой схемотехники подавляющего большинства электронных устройств и интегральных микросхем. Транзисторы по структуре, принципу действия и параметрам делятся на два класса — биполярные и полевые (униполярные). В биполярном транзисторе используются полупроводники с обоими типами проводимости, он работает за счёт взаимодействия двух близко расположенных на кристалле p-n-переходов и управляется изменением тока через база-эмиттерный переход, при этом вывод эмиттера в схеме «с общим эмиттером» является общим для управляющего и выходного токов. Существуют также схемы «с общим коллектором (эмиттерный повторитель)» и «с общей базой». В полевом транзисторе используется полупроводник только одного типа проводимости, расположенный в виде тонкого канала, на который воздействует электрическое поле изолированного от канала затвора, управление осуществляется изменением напряжения между затвором и истоком. Полевой транзистор, в отличие от биполярного, управляется напряжением, а не током. В настоящее время в аналоговой технике доминируют биполярные транзисторы (БТ) (международный термин — BJT, bipolar junction transistor). В цифровой технике, в составе микросхем (логика, память, процессоры, компьютеры, цифровая связь и т. п.), напротив, биполярные транзисторы почти полностью вытеснены полевыми. В 1990-е годы был разработан новый тип гибридных биполярно-полевых транзисторов — IGBT, которые сейчас широко применяются в силовой электронике. В 1956 году за исследования транзисторного эффекта Уильям Шокли, Джон Бардин и Уолтер Браттейн получили Нобелевскую премию по физике. К 1980-м годам транзисторы, благодаря своей миниатюрности, экономичности, устойчивости к механическим воздействиям и невысокой стоимости, практически полностью вытеснили электронные лампы из малосигнальной электроники. Благодаря своей способности работать при низких напряжениях и значительных токах, транзисторы позволили уменьшить потребность в электромагнитных реле и механических переключателях в оборудовании, а благодаря способности к миниатюризации и интеграции позволили создать интегральные схемы, заложив основы микроэлектроники. С 1990-х в связи с появлением новых мощных транзисторов, стали активно вытесняться электронными устройствами трансформаторы, электромеханические и тиристорные ключи в силовой электротехнике, начал активно развиваться частотно-регулируемый привод и инверторные преобразователи напряжения. На принципиальных схемах транзистор обычно обозначается «VT» или «Q» с добавлением позиционного индекса, например, VT12. В русскоязычной литературе и документации в XX веке до 70-х годов применялись также обозначения «Т», «ПП» (полупроводниковый прибор) или «ПТ» (полупроводниковый триод).