Научный руководитель Центра квантовых технологий МГУ Сергей Кулик представил современное состояние квантовых технологий в России и в мире на научном семинаре Национального центра физики и математики (НЦФМ) в рамках Десятилетия науки и технологий. Учёный рассказал, какие квантовые вычислительные машины и квантовые коммуникации уже созданы в России и как их дальше будут развивать специалисты в стране. В рамках НЦФМ учёные планируют создать квантовую сеть, а также существенно продвинуться в области квантовой космической связи.
В докладе «Квантовые технологии: состояние и перспективы» научный руководитель Центра квантовых технологий МГУ Сергей Кулик представил историю создания и планы по развитию «трёх китов» квантовых технологий: квантовых вычислений, квантовой связи и квантовой сенсорики. Эти субтехнологии развиваются в России на основе фундаментальных научных школ вне классической физики: по взаимодействию излучения с веществом академика РАН Леонида Келдыша, по теории квантовых измерений члена-корреспондента РАН Владимира Брагинского, по квантовой оптике – профессора Давида Клышко.
- Квантовые технологии дают возможность оперировать индивидуальными квантовыми объектами: атомами, ионами, фотонами, так далее. Это т.н. вторая квантовая революция. Кванты уже пронизывают нашу жизнь насквозь: от гаджета до лазерной указки. Но современные квантовые технологии выводятся физикой на совершенно иной уровень. С одной стороны, это фундаментально ёмкая область, а с другой, учёным необходимо провести ещё много исследований, чтобы создать квантовые установки с теми параметрами, которые позволяют показать все преимущества квантовых технологий в сравнении с классическими и использовать их в прикладных разработках.
В квантовых технологиях, вместо классических битов, используются квантовые биты – кубиты – как мера квантовой информации. Если вы понимаете, как работает классическая поляризационная оптика, то вы поймете, как работает двухуровневая система в физике, а значит, и как квантовый бит может быть реализован на разных физических двухуровневых системах. Специфика квантовых состояний в том, что состояние двухчастичной квантовой системы может быть полностью определено и при этом состояние составляющих его двух подсистем полностью не определено. В классическом мире вы не найдёте примеров таких состояний, когда вы знаете всё о составной системе и не знаете ничего о тех подсистемах, которые её образуют, - объяснил Сергей Кулик.
Комбинаторная и глобальная оптимизация, машинное обучение, геологоразведка, молекулярная структура, странствующий коммивояжёр – примеры сложнейших задач, решить которые помогут квантовые вычислительные устройства. Сергей Кулик представил фазы зрелости квантовых вычислений, согласно которым примерно через 10 лет будет построен квантовый компьютер для специальных приложений и через 20 лет – полномасштабный помехоустойчивый квантовый компьютер для решения масштабных задач – так как это не сможет сделать самый мощный классический компьютер. В России физические системы для квантовых вычислительных устройств исследуют учёные из МГУ, МФТИ, Университета МИСИС, МГТУ, ФИ РАН, ИОФ РАН, ИФП СО РАН, ФТИ РАН и ИФТТ РАН.
- При оптимистичном исходе прогресс в области квантовых вычислений будет расти по экспоненте. За 20 лет мы достигли следующего: 2002 год – 5 кубитов, 2015 год – 50 кубитов, 2023 год – 433 кубита. Маломощные квантовые компьютеры уже есть, но они не показывают все преимущества квантовых компьютеров в сравнении с обычными. Мы живём в эпохе среднемасштабных квантовых компьютеров без коррекции их ошибок, – т.н. эпоха NISQ, – уточнил Сергей Кулик.
По его словам, чтобы создать полномасштабный квантовый компьютер, нужно, как минимум, решить три задачи: определиться, как реализовать квантовый бит на физической системе, реализовать набор универсальных квантовых систем с хорошей точностью и масштабировать схемы небольшим числом ресурсов. Сегодня нет одного лидера среди квантовых систем, который бы удовлетворял всем критериям: масштабируемость, время когерентности, время срабатывания гейта, достоверность, R-фактор – поэтому необходимо развивать все платформы. Например, строятся очень хорошие прогнозы в плане развития фотонных чипов, у которых бесконечная когерентность; трудность в том, что фотоны ни с чем не взаимодействуют, ими трудно управлять. Но квантовое вычислительное превосходство уже продемонстрировано, даже небольшие NISQ-устройства могут дать преимущество в решении практически важных задач.
Помимо квантовых компьютеров, специалисты в России развивают квантовые коммуникации, когда информация передается с помощью квантовых состояний. Учёные создают устройства квантовой памяти и квантовых интерфейсов. Например, в МГУ работает «квантовый телефон» для связи между ректоратом и другими отделениями университета, сейчас специалисты внедряют видеоформат такой связи. Другой пример: учёные МГУ и РФЯЦ-ВНИИЭФ запускают проект по созданию квантовой космической связи – платформы с небольшими низкоорбитальными спутниками, которые обмениваются с наземным терминалом квантовой информацией для обеспечения безопасной связи. Эта перспективная технология решает проблемы защищенной передачи информации на большой территории России; выведение первого пробного спутника на орбиту запланировано в 2024 году.
- Квантовая связь нужна для защиты информации на принципиально новом уровне, когда вы гарантируете защищённость передаваемых данных не техническими характеристиками устройств, а на основе законов природы, что принципиально важно. Мы идёт по пути развития квантовой криптографии - квантового распределения ключе - вплоть до создания квантового интернета. Система работает полностью в автоматическом режиме, когда нет системного администратора, через которого могла бы произойти утечка информации; скорость генерации ключей может быть очень высокой, мастер-ключ может меняться тысячу раз в секунду, хотя и раз в минуту – вполне достаточная скорость для большого числа приложений, – отметил научный руководитель Центра квантовых технологий МГУ Сергей Кулик.
Физик кратко упомянул и развитие технологий квантовой сенсорики – измерительных приборов на основе квантовых эффектов.
- Развитие рынка квантовых сенсоров предполагает создание большого числа инновационных продуктов, технологий и отдельных отраслевых решений в рамках трёх основных групп: часы, гравиметры, гироскопы; сенсоры электрического и магнитного поля; квантовая метрология, – добавил учёный.
Научная программа НЦФМ включает три направления исследований, посвящённых развитию вычислительных и информационных технологий. В рамках НЦФМ специалисты развивают одну из квантовых субтехнологий – квантовые коммуникации. Планируется создать квантовую сеть на основе сертифицированного оборудования, а также существенно продвинуться в области квантовой космической связи. Запись научного семинара можно посмотреть во «ВКонтакте» НЦФМ по ссылкеexternal link, opens in a new tab.